Hot topics close

ABHD6 loss-of-function in mesoaccumbens postsynaptic but not presynaptic neurons prevents diet-induced obesity in male mice

ABHD6 lossoffunction in mesoaccumbens postsynaptic but not presynaptic 
neurons prevents dietinduced obesity in male mice
Endocannabinoid signalling processes are implicated in body weight regulation. Here, authors used viral-genetic tools to identify the enzyme ABHD6 in postsynaptic mesoaccumbal neurons is a key determinant of body weight and reward-relevant behaviour.
  • Piazza, P. V., Cota, D. & Marsicano, G. The CB1 receptor as the Cornerstone of Exostasis. Neuron 93, 1252–1274 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Loos, R. J. F. & Yeo, G. S. H. The genetics of obesity: from discovery to biology. Nat. Rev. Genet 23, 120–133 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Poursharifi, P., Madiraju, S. R. M. & Prentki, M. Monoacylglycerol signalling and ABHD6 in health and disease. Diab., Obes. Metab. 19, 76–89 (2017).

    Article  CAS  Google Scholar 

  • Blankman, J. L., Simon, G. M. & Cravatt, B. F. A comprehensive profile of brain enzymes that hydrolyze the Endocannabinoid 2-Arachidonoylglycerol. Chem. Biol. 14, 1347–1356 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marrs, W. R. et al. The serine hydrolase ABHD6 controls the accumulation and efficacy of 2-AG at cannabinoid receptors. Nat. Neurosci. 13, 951–957 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, J. K., Kaplan, J. & Stella, N. ABHD6: Its place in Endocannabinoid signaling and beyond. Trends Pharm. Sci. 40, 267–277 (2019).

    Article  PubMed  Google Scholar 

  • Fulton, S. Appetite and reward. Front Neuroendocrinol. 31, 85–103 (2010).

    Article  PubMed  Google Scholar 

  • Volkow, N. D., Wise, R. A. & Baler, R. The dopamine motive system: implications for drug and food addiction. Nat. Rev. Neurosci. 18, 741–752 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Parsons, L. H. & Hurd, Y. L. Endocannabinoid signalling in reward and addiction. Nat. Rev. Neurosci. 16, 579–594 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau, B. K., Cota, D., Cristino, L. & Borgland, S. L. Endocannabinoid modulation of homeostatic and non-homeostatic feeding circuits. Neuropharmacology 124, 38–51 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Peters, K. Z., Oleson, E. B. & Cheer, J. F. A Brain on Cannabinoids: The role of dopamine release in reward seeking and addiction. Cold Spring Harb. Perspect. Med. 11, https://doi.org/10.1101/cshperspect.a039305 (2021).

  • Covey, D. P. & Yocky, A. G. Endocannabinoid modulation of nucleus accumbens microcircuitry and terminal Dopamine release. Front Synaptic Neurosci. 13, 734975 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mátyás, F. et al. Identification of the sites of 2-arachidonoylglycerol synthesis and action imply retrograde endocannabinoid signaling at both GABAergic and glutamatergic synapses in the ventral tegmental area. Neuropharmacology 54, 95–107 (2008).

    Article  PubMed  Google Scholar 

  • Burgdorf, C. E. et al. Endocannabinoid genetic variation enhances vulnerability to THC reward in adolescent female mice. Sci. Adv. 6, eaay1502 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Melis, M. et al. Endocannabinoids mediate presynaptic inhibition of glutamatergic transmission in rat ventral tegmental area dopamine neurons through activation of CB1 receptors. J. Neurosci. 24, 53–62 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheer, J. F., Wassum, K. M., Heien, M. L., Phillips, P. E. & Wightman, R. M. Cannabinoids enhance subsecond dopamine release in the nucleus accumbens of awake rats. J. Neurosci. 24, 4393–4400 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bossong, M. G. et al. Further human evidence for striatal dopamine release induced by administration of ∆9-tetrahydrocannabinol (THC): selectivity to limbic striatum. Psychopharmacology 232, 2723–2729 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tung, L.-W. et al. Orexins contribute to restraint stress-induced cocaine relapse by endocannabinoid-mediated disinhibition of dopaminergic neurons. Nat. Commun. 7, 12199 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Luján, M. Á. et al. Mobilization of endocannabinoids by midbrain dopamine neurons is required for the encoding of reward prediction. Nat. Commun. 14, 7545 (2023).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Oleson, E. B. et al. Endocannabinoids shape accumbal encoding of cue-motivated behavior via CB1 receptor activation in the ventral tegmentum. Neuron 73, 360–373 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oleson, E. B. et al. Cannabinoid receptor activation shifts temporally engendered patterns of dopamine release. Neuropsychopharmacology 39, 1441–1452 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, H., Treadway, T., Covey, D. P., Cheer, J. F. & Lupica, C. R. Cocaine-induced endocannabinoid mobilization in the ventral tegmental area. Cell Rep. 12, 1997–2008 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenzel, J. M. et al. Phasic Dopamine signals in the nucleus accumbens that cause active avoidance require Endocannabinoid mobilization in the midbrain. Curr. Biol. 28, 1392–1404.e1395 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bacharach, S. Z. et al. Decreased ventral tegmental area CB1R signaling reduces sign tracking and shifts cue-outcome dynamics in rat nucleus Accumbens. J. Neurosci. 43, 4684–4696 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward, S. J., Walker, E. A. & Dykstra, L. A. Effect of Cannabinoid CB1 receptor antagonist SR141714A and CB1 receptor knockout on cue-induced reinstatement of Ensure® and corn-oil seeking in mice. Neuropsychopharmacology 32, 2592–2600 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Hernandez, G. & Cheer, J. F. Effect of CB1 receptor blockade on food-reinforced responding and associated nucleus accumbens neuronal activity in rats. J. Neurosci. 32, 11467–11477 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Covey, D. P. et al. Inhibition of endocannabinoid degradation rectifies motivational and dopaminergic deficits in the Q175 mouse model of Huntington’s disease. Neuropsychopharmacology 43, 2056–2063 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feja, M. et al. The novel MAGL inhibitor MJN110 enhances responding to reward-predictive incentive cues by activation of CB1 receptors. Neuropharmacology 162, 107814 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Covey, D. P., Hernandez, E., Luján, M. Á. & Cheer, J. F. Chronic augmentation of Endocannabinoid levels persistently increases dopaminergic encoding of reward cost and motivation. J. Neurosci. 41, 6946 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerfen, C. R. & Surmeier, D. J. Modulation of striatal projection systems by dopamine. Annu Rev. Neurosci. 34, 441–466 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robbe, D., Kopf, M., Remaury, A., Bockaert, J. & Manzoni, O. J. Endogenous cannabinoids mediate long-term synaptic depression in the nucleus accumbens. Proc. Natl Acad. Sci. 99, 8384–8388 (2002).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchigashima, M. et al. Subcellular arrangement of molecules for 2-Arachidonoyl-Glycerol-mediated retrograde signaling and its physiological contribution to synaptic modulation in the Striatum. J. Neurosci. 27, 3663 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanimura, A. et al. The endocannabinoid 2-arachidonoylglycerol produced by diacylglycerol lipase alpha mediates retrograde suppression of synaptic transmission. Neuron 65, 320–327 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Shen, C. J. et al. Cannabinoid CB(1) receptors in the amygdalar cholecystokinin glutamatergic afferents to nucleus accumbens modulate depressive-like behavior. Nat. Med. 25, 337–349 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Deroche, M. A., Lassalle, O., Castell, L., Valjent, E. & Manzoni, O. J. Cell-Type- and Endocannabinoid-specific synapse connectivity in the adult nucleus accumbens core. J. Neurosci. 40, 1028 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang, E. K. & Lupica, C. R. Altered Corticolimbic control of the nucleus accumbens by long-term Δ(9)-Tetrahydrocannabinol exposure. Biol. Psychiatry 87, 619–631 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Folkes, O. M. et al. An endocannabinoid-regulated basolateral amygdala-nucleus accumbens circuit modulates sociability. J. Clin. Invest 130, 1728–1742 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narushima, M., Uchigashima, M., Hashimoto, K., Watanabe, M. & Kano, M. Depolarization-induced suppression of inhibition mediated by endocannabinoids at synapses from fast-spiking interneurons to medium spiny neurons in the striatum. Eur. J. Neurosci. 24, 2246–2252 (2006).

    Article  PubMed  Google Scholar 

  • Winters, B. D. et al. Cannabinoid receptor 1-expressing neurons in the nucleus accumbens. Proc. Natl Acad. Sci. 109, E2717–E2725 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathur, B. N., Tanahira, C., Tamamaki, N. & Lovinger, D. M. Voltage drives diverse endocannabinoid signals to mediate striatal microcircuit-specific plasticity. Nat. Neurosci. 16, 1275–1283 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, W. J., Schlüter, O. M. & Dong, Y. A feedforward inhibitory circuit mediated by CB1-Expressing fast-spiking interneurons in the nucleus accumbens. Neuropsychopharmacology 42, 1146–1156 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, J. et al. Nucleus accumbens feedforward inhibition circuit promotes cocaine self-administration. Proc. Natl Acad. Sci. USA 114, E8750–e8759 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freiman, I., Anton, A., Monyer, H., Urbanski, M. J. & Szabo, B. Analysis of the effects of cannabinoids on identified synaptic connections in the caudate-putamen by paired recordings in transgenic mice. J. Physiol. 575, 789–806 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buczynski, M. W. et al. Diacylglycerol lipase disinhibits VTA dopamine neurons during chronic nicotine exposure. Proc. Natl Acad. Sci. 113, 1086–1091 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis, M. I. et al. The cannabinoid-1 receptor is abundantly expressed in striatal striosomes and striosome-dendron bouquets of the substantia nigra. PLoS One 13, e0191436 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Fulton, S., Décarie-Spain, L., Fioramonti, X., Guiard, B. & Nakajima, S. The menace of obesity to depression and anxiety prevalence. Trends Endocrinol. Metab. 33, 18–35 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Bara, A., Ferland, J. N., Rompala, G., Szutorisz, H. & Hurd, Y. L. Cannabis and synaptic reprogramming of the developing brain. Nat. Rev. Neurosci. 22, 423–438 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frau, R. et al. Prenatal THC exposure produces a hyperdopaminergic phenotype rescued by pregnenolone. Nat. Neurosci. 22, 1975–1985 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metna-Laurent, M., Mondésir, M., Grel, A., Vallée, M. & Piazza, P. V. Cannabinoid-Induced Tetrad in Mice. Curr. Protoc. Neurosci. 80, 9.59.51–59.59.10 (2017).

    Article  Google Scholar 

  • Busquets-García, A., Bolaños, J. P. & Marsicano, G. Metabolic Messengers: endocannabinoids. Nat. Metab. 4, 848–855 (2022).

    Article  PubMed  Google Scholar 

  • Saunders, A. et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015–1030.e1016 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savell, K. E. et al. A dopamine-induced gene expression signature regulates neuronal function and cocaine response. Sci. Adv. 6, eaba4221 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisette, A. et al. α/β-Hydrolase Domain 6 in the Ventromedial Hypothalamus controls energy metabolism flexibility. Cell Rep. 17, 1217–1226 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Zhao, S. et al. α/β-Hydrolase domain-6-accessible monoacylglycerol controls glucose-stimulated insulin secretion. Cell Metab. 19, 993–1007 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Phillips, R. A. et al. An atlas of transcriptionally defined cell populations in the rat ventral tegmental area. Cell Rep. 39, 110616 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlosburg, J. E. et al. Chronic monoacylglycerol lipase blockade causes functional antagonism of the endocannabinoid system. Nat. Neurosci. 13, 1113–1119 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuss, J. et al. A runner’s high depends on cannabinoid receptors in mice. Proc. Natl Acad. Sci. USA 112, 13105–13108 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubreucq, S. et al. Ventral tegmental area cannabinoid type-1 receptors control voluntary exercise performance. Biol. Psychiatry 73, 895–903 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Muguruza, C. et al. The motivation for exercise over palatable food is dictated by cannabinoid type-1 receptors. JCI Insight 4, https://doi.org/10.1172/jci.insight.126190 (2019).

  • Siebers, M., Biedermann, S. V., Bindila, L., Lutz, B. & Fuss, J. Exercise-induced euphoria and anxiolysis do not depend on endogenous opioids in humans. Psychoneuroendocrinology 126, 105173 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Oleson, E. B., Hamilton, L. R. & Gomez, D. M. Cannabinoid modulation of Dopamine release during motivation, periodic reinforcement, exploratory behavior, habit formation, and attention. Front Synaptic Neurosci. 13, 660218 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, W. et al. Deficiency in endocannabinoid signaling in the nucleus accumbens induced by chronic unpredictable stress. Neuropsychopharmacology 35, 2249–2261 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lafourcade, M. et al. Nutritional omega-3 deficiency abolishes endocannabinoid-mediated neuronal functions. Nat. Neurosci. 14, 345–350 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Bosch-Bouju, C., Larrieu, T., Linders, L., Manzoni, O. J. & Layé, S. Endocannabinoid-mediated plasticity in nucleus accumbens controls vulnerability to anxiety after social defeat stress. Cell Rep. 16, 1237–1242 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Dudek, K., et al. Astrocytic cannabinoid receptor 1 promotes resilience by dampening stress-induced blood-brain barrier alterations. Res. Square, https://doi.org/10.21203/rs.3.rs-2978353/v1 (2023).

  • Friend, D. M. et al. Basal Ganglia dysfunction contributes to physical inactivity in obesity. Cell Metab. 25, 312–321 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. & Alger, B. E. Reduction in endocannabinoid tone is a homeostatic mechanism for specific inhibitory synapses. Nat. Neurosci. 13, 592–600 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pribiag, H. & Stellwagen, D. Neuroimmune regulation of homeostatic synaptic plasticity. Neuropharmacology 78, 13–22 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Morena, M., Patel, S., Bains, J. S. & Hill, M. N. Neurobiological interactions between stress and the Endocannabinoid system. Neuropsychopharmacology 41, 80–102 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Zhao, S. et al. α/β-Hydrolase Domain 6 deletion induces adipose browning and prevents obesity and Type 2 Diabetes. Cell Rep. 14, 2872–2888 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Zhong, P. et al. Monoacylglycerol lipase inhibition blocks chronic stress-induced depressive-like behaviors via activation of mTOR signaling. Neuropsychopharmacology 39, 1763–1776 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manduca, A. et al. Amplification of mGlu(5)-Endocannabinoid signaling rescues behavioral and synaptic deficits in a mouse model of adolescent and adult dietary polyunsaturated fatty acid imbalance. J. Neurosci. 37, 6851–6868 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu, T. M., McCutcheon, J. E. & Roitman, M. F. Parallels and overlap: the integration of homeostatic signals by mesolimbic dopamine neurons. Front Psychiatry 9, 410 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Fulton, S. et al. Leptin regulation of the mesoaccumbens dopamine pathway. Neuron 51, 811–822 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Morales, M. & Margolis, E. B. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat. Rev. Neurosci. 18, 73–85 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Tan, K. R. et al. GABA neurons of the VTA drive conditioned place aversion. Neuron 73, 1173–1183 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Zessen, R., Phillips, J. L., Budygin, E. A. & Stuber, G. D. Activation of VTA GABA neurons disrupts reward consumption. Neuron 73, 1184–1194 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Friend, L. et al. CB1-dependent long-term depression in ventral tegmental area GABA Neurons: A novel target for Marijuana. J. Neurosci. 37, 10943–10954 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, W., Blankman, J. L. & Cravatt, B. F. A functional proteomic strategy to discover inhibitors for uncharacterized hydrolases. J. Am. Chem. Soc. 129, 9594–9595 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Thomas, G. et al. The serine hydrolase ABHD6 Is a critical regulator of the metabolic syndrome. Cell Rep. 5, 508–520 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Christensen, R., Kristensen, P. K., Bartels, E. M., Bliddal, H. & Astrup, A. Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet 370, 1706–1713 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Ohno-Shosaku, T. et al. Presynaptic cannabinoid sensitivity is a major determinant of depolarization-induced retrograde suppression at hippocampal synapses. J. Neurosci. 22, 3864–3872 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adermark, L., Talani, G. & Lovinger, D. M. Endocannabinoid-dependent plasticity at GABAergic and glutamatergic synapses in the striatum is regulated by synaptic activity. Eur. J. Neurosci. 29, 32–41 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh, S. et al. ABHD6 selectively controls metabotropic-dependent increases in 2-AG production. bioRxiv, 2022.2005.2018.492553, https://doi.org/10.1101/2022.05.18.492553 (2022).

  • Busquets-Garcia, A., Bains, J. & Marsicano, G. CB1 receptor signaling in the brain: extracting specificity from ubiquity. Neuropsychopharmacology 43, 4–20 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Schwenk, J. et al. High-resolution proteomics unravel architecture and molecular diversity of native AMPA receptor complexes. Neuron 74, 621–633 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Wei, M. et al. α/β-Hydrolase domain-containing 6 (ABHD6) negatively regulates the surface delivery and synaptic function of AMPA receptors. Proc. Natl Acad. Sci. USA 113, E2695–E2704 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwenk, J. et al. An ER assembly line of AMPA-receptors controls excitatory neurotransmission and its plasticity. Neuron 104, 680–692.e689 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Sigel, E. et al. The major central endocannabinoid directly acts at GABA(A) receptors. Proc. Natl Acad. Sci. USA 108, 18150–18155 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Naydenov, A. V. et al. ABHD6 blockade exerts antiepileptic activity in PTZ-induced seizures and in spontaneous seizures in R6/2 mice. Neuron 83, 361–371 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Strat, Y. & Le Foll, B. Obesity and cannabis use: results from 2 representative national surveys. Am. J. Epidemiol. 174, 929–933 (2011).

    Article  PubMed  Google Scholar 

  • Thompson, C. A. & Hay, J. W. Estimating the association between metabolic risk factors and marijuana use in U.S. adults using data from the continuous National Health and Nutrition Examination Survey. Ann. Epidemiol. 25, 486–491 (2015).

    Article  PubMed  Google Scholar 

  • Penner, E. A., Buettner, H. & Mittleman, M. A. The impact of marijuana use on glucose, insulin, and insulin resistance among US adults. Am. J. Med. 126, 583–589 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Smit, E. & Crespo, C. J. Dietary intake and nutritional status of US adult marijuana users: results from the Third National Health and Nutrition Examination Survey. Public Health Nutr. 4, 781–786 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Rodondi, N., Pletcher, M. J., Liu, K., Hulley, S. B. & Sidney, S. Marijuana use, diet, body mass index, and cardiovascular risk factors (from the CARDIA Study). Am. J. Cardiol. 98, 478–484 (2006).

    Article  PubMed  Google Scholar 

  • Tripathi, B. R. et al. Decreased prevalence of diabetes in marijuana users: cross-sectional data from the National Health and Nutrition Examination Survey (NHANES) III. BMJ Open 2, e000494 (2012).

    Article  Google Scholar 

  • Clark, T. M., Jones, J. M., Hall, A. G., Tabner, S. A. & Kmiec, R. L. Theoretical explanation for reduced body mass index and obesity rates in cannabis users. Cannabis Cannabinoid Res. 3, 259–271 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkham, T. C., Williams, C. M., Fezza, F. & Marzo, V. D. Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. Br. J. Pharmacol. 136, 550–557 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soria-Gómez, E. et al. Pharmacological enhancement of the endocannabinoid system in the nucleus accumbens shell stimulates food intake and increases c-Fos expression in the hypothalamus. Br. J. Pharm. 151, 1109–1116 (2007).

    Article  Google Scholar 

  • Bellocchio, L. et al. Bimodal control of stimulated food intake by the endocannabinoid system. Nat. Neurosci. 13, 281–283 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Stratford, T. R. & Kelley, A. E. GABA in the nucleus accumbens shell participates in the central regulation of feeding behavior. J. Neurosci. 17, 4434–4440 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds, S. M. & Berridge, K. C. Fear and feeding in the nucleus accumbens shell: rostrocaudal segregation of GABA-elicited defensive behavior versus eating behavior. J. Neurosci. 21, 3261–3270 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldo, B. A., Alsene, K. M., Negron, A. & Kelley, A. E. Hyperphagia induced by GABAA receptor-mediated inhibition of the nucleus accumbens shell: dependence on intact neural output from the central amygdaloid region. Behav. Neurosci. 119, 1195–1206 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Krause, M., German, P. W., Taha, S. A. & Fields, H. L. A pause in nucleus accumbens neuron firing is required to initiate and maintain feeding. J. Neurosci. 30, 4746 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed, S. J. et al. Coordinated reductions in excitatory input to the nucleus accumbens underlie food consumption. Neuron 99, 1260–1273.e1264 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Vachez, Y. M. et al. Ventral arkypallidal neurons inhibit accumbal firing to promote reward consumption. Nat. Neurosci. 24, 379–390 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richard, J. M. & Berridge, K. C. Nucleus accumbens dopamine/glutamate interaction switches modes to generate desire versus dread: D(1) alone for appetitive eating but D(1) and D(2) together for fear. J. Neurosci. 31, 12866–12879 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connor, E. C. et al. Accumbal D1R neurons projecting to lateral hypothalamus authorize feeding. Neuron 88, 553–564 (2015).

    Article  PubMed  Google Scholar 

  • Ledent, C. et al. Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science 283, 401–404 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Monory, K. et al. Genetic dissection of behavioural and autonomic effects of Δ9-Tetrahydrocannabinol in mice. PLOS Biol. 5, e269 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  • Soria-Gomez, E. et al. Subcellular specificity of cannabinoid effects in striatonigral circuits. Neuron 109, 1513–1526.e1511 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Onaivi, E. S., Chakrabarti, A., Gwebu, E. T. & Chaudhuri, G. Neurobehavioral effects of delta 9-THC and cannabinoid (CB1) receptor gene expression in mice. Behav. Brain Res. 72, 115–125 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Long, J. Z. et al. Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat. Chem. Biol. 5, 37–44 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Shonesy, B. C. et al. CaMKII regulates diacylglycerol lipase-α and striatal endocannabinoid signaling. Nat. Neurosci. 16, 456–463 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alhouayek, M., Masquelier, J., Cani, P. D., Lambert, D. M. & Muccioli, G. G. Implication of the anti-inflammatory bioactive lipid prostaglandin D2-glycerol ester in the control of macrophage activation and inflammation by ABHD6. Proc. Natl Acad. Sci. USA 110, 17558–17563 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng, L., Viray, K., Singh, S., Cravatt, B. & Stella, N. ABHD6 controls amphetamine-stimulated hyperlocomotion: involvement of CB(1) Receptors. Cannabis Cannabinoid Res. 7, 188–198 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mogenson, G. J., Jones, D. L. & Yim, C. Y. From motivation to action: functional interface between the limbic system and the motor system. Prog. Neurobiol. 14, 69–97 (1980).

    Article  CAS  PubMed  Google Scholar 

  • Yael, D., Tahary, O., Gurovich, B., Belelovsky, K. & Bar-Gad, I. Disinhibition of the nucleus accumbens leads to macro-scale hyperactivity consisting of micro-scale behavioral segments encoded by striatal activity. J. Neurosci. 39, 5897–5909 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horne, E. A. et al. Downregulation of cannabinoid receptor 1 from neuropeptide Y interneurons in the basal ganglia of patients with Huntington’s disease and mouse models. Eur. J. Neurosci. 37, 429–440 (2013).

    Article  PubMed  Google Scholar 

  • Bonm, A. V. et al. Control of exploration, motor coordination and amphetamine sensitization by cannabinoid CB(1) receptors expressed in medium spiny neurons. Eur. J. Neurosci. 54, 4934–4952 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mariani, Y. et al. Striatopallidal cannabinoid type-1 receptors mediate amphetamine-induced sensitization. Curr. Biol., https://doi.org/10.1016/j.cub.2023.09.075 (2023).

  • Schall, T. A., Wright, W. J. & Dong, Y. Nucleus accumbens fast-spiking interneurons in motivational and addictive behaviors. Mol. Psychiatry 26, 234–246 (2021).

    Article  PubMed  Google Scholar 

  • Manz, K. M. et al. Calcium-permeable AMPA receptors promote endocannabinoid signaling at Parvalbumin Interneuron synapses in the nucleus accumbens core. Cell Rep. 32, 107971 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manz, K. M. et al. Cocaine restricts nucleus accumbens feedforward drive through a monoamine-independent mechanism. Neuropsychopharmacology 47, 652–663 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Owen, S. F., Berke, J. D. & Kreitzer, A. C. Fast-spiking interneurons supply feedforward control of bursting, calcium, and plasticity for efficient learning. Cell 172, 683–695.e615 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiltschko, A. B., Pettibone, J. R. & Berke, J. D. Opposite effects of stimulant and antipsychotic drugs on striatal fast-spiking interneurons. Neuropsychopharmacology 35, 1261–1270 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morra, J. T., Glick, S. D. & Cheer, J. F. Neural encoding of psychomotor activation in the nucleus accumbens core, but not the shell, requires cannabinoid receptor signaling. J. Neurosci. 30, 5102–5107 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts, B. M., White, M. G., Patton, M. H., Chen, R. & Mathur, B. N. Ensemble encoding of action speed by striatal fast-spiking interneurons. Brain Struct. Funct. 224, 2567–2576 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gritton, H. J. et al. Unique contributions of parvalbumin and cholinergic interneurons in organizing striatal networks during movement. Nat. Neurosci. 22, 586–597 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pennartz, C. M., Groenewegen, H. J. & Lopes da Silva, F. H. The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Prog. Neurobiol. 42, 719–761 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Roseberry, T. K. et al. Cell-type-specific control of brainstem locomotor circuits by basal Ganglia. Cell 164, 526–537 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leiras, R., Cregg, J. M. & Kiehn, O. Brainstem circuits for locomotion. Annu Rev. Neurosci. 45, 63–85 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Salamone, J. D. & Correa, M. The mysterious motivational functions of mesolimbic dopamine. Neuron 76, 470–485 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beeler, J. A., Frazier, C. R. & Zhuang, X. Putting desire on a budget: dopamine and energy expenditure, reconciling reward and resources. Front Integr. Neurosci. 6, 49 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Salamone, J. D. et al. Haloperidol and nucleus accumbens dopamine depletion suppress lever pressing for food but increase free food consumption in a novel food choice procedure. Psychopharmacology 104, 515–521 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Salamone, J. D., Cousins, M. S. & Bucher, S. Anhedonia or anergia? Effects of haloperidol and nucleus accumbens dopamine depletion on instrumental response selection in a T-maze cost/benefit procedure. Behav. Brain Res. 65, 221–229 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Schelp, S. A. et al. A transient dopamine signal encodes subjective value and causally influences demand in an economic context. Proc. Natl Acad. Sci. USA 114, E11303–e11312 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Koob, G. F., Riley, S. J., Smith, S. C. & Robbins, T. W. Effects of 6-hydroxydopamine lesions of the nucleus accumbens septi and olfactory tubercle on feeding, locomotor activity, and amphetamine anorexia in the rat. J. Comp. Physiol. Psychol. 92, 917–927 (1978).

    Article  CAS  PubMed  Google Scholar 

  • Salamone, J. D., Kurth, P. A., McCullough, L. D., Sokolowski, J. D. & Cousins, M. S. The role of brain dopamine in response initiation: effects of haloperidol and regionally specific dopamine depletions on the local rate of instrumental responding. Brain Res. 628, 218–226 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Baldo, B. A., Sadeghian, K., Basso, A. M. & Kelley, A. E. Effects of selective dopamine D1 or D2 receptor blockade within nucleus accumbens subregions on ingestive behavior and associated motor activity. Behav. Brain Res. 137, 165–177 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Haney, M. et al. Signaling-specific inhibition of the CB1 receptor for cannabis use disorder: phase 1 and phase 2a randomized trials. Nat. Med. 29, 1487–1499 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higgs, S., Barber, D. J., Cooper, A. J. & Terry, P. Differential effects of two cannabinoid receptor agonists on progressive ratio responding for food and free-feeding in rats. Behav. Pharm. 16, 389–393 (2005).

    Article  CAS  Google Scholar 

  • Solinas, M. & Goldberg, S. R. Motivational effects of cannabinoids and opioids on food reinforcement depend on simultaneous activation of cannabinoid and opioid systems. Neuropsychopharmacology 30, 2035–2045 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Ward, S. J. & Dykstra, L. A. The role of CB1 receptors in sweet versus fat reinforcement: effect of CB1 receptor deletion, CB1 receptor antagonism (SR141716A) and CB1 receptor agonism (CP-55940). Behav. Pharm. 16, 381–388 (2005).

    Article  CAS  Google Scholar 

  • Randall, P. A. et al. Dopaminergic modulation of effort-related choice behavior as assessed by a progressive ratio chow feeding choice task: pharmacological studies and the role of individual differences. PLoS One 7, e47934 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Randall, P. A. et al. The VMAT-2 inhibitor tetrabenazine affects effort-related decision making in a progressive ratio/chow feeding choice task: reversal with antidepressant drugs. PLoS One 9, e99320 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Thornton-Jones, Z. D., Vickers, S. P. & Clifton, P. G. The cannabinoid CB1 receptor antagonist SR141716A reduces appetitive and consummatory responses for food. Psychopharmacology 179, 452–460 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen, E. B. & Huskinson, S. L. Effects of rimonabant on behavior maintained by progressive ratio schedules of sucrose reinforcement in obese Zucker (fa/fa) rats. Behav. Pharm. 19, 735–742 (2008).

    Article  CAS  Google Scholar 

  • Maccioni, P., Pes, D., Carai, M. A., Gessa, G. L. & Colombo, G. Suppression by the cannabinoid CB1 receptor antagonist, rimonabant, of the reinforcing and motivational properties of a chocolate-flavoured beverage in rats. Behav. Pharm. 19, 197–209 (2008).

    Article  CAS  Google Scholar 

  • Mateo, Y. et al. Endocannabinoid actions on cortical terminals orchestrate local modulation of dopamine release in the nucleus accumbens. Neuron 96, 1112–1126.e1115 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramiro-Fuentes, S., Ortiz, O., Moratalla, R. & Fernandez-Espejo, E. Intra-accumbens rimonabant is rewarding but induces aversion to cocaine in cocaine-treated rats, as does in vivo accumbal cannabinoid CB1 receptor silencing: critical role for glutamate receptors. Neuroscience 167, 205–215 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Norris, C., Szkudlarek, H. J., Pereira, B., Rushlow, W. & Laviolette, S. R. The bivalent rewarding and aversive properties of δ(9)-tetrahydrocannabinol are mediated through dissociable opioid receptor substrates and neuronal modulation mechanisms in distinct striatal sub-regions. Sci. Rep. 9, 9760 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Voorn, P., Vanderschuren, L. J., Groenewegen, H. J., Robbins, T. W. & Pennartz, C. M. Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci. 27, 468–474 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Grueter, B. A., Brasnjo, G. & Malenka, R. C. Postsynaptic TRPV1 triggers cell type-specific long-term depression in the nucleus accumbens. Nat. Neurosci. 13, 1519–1525 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilbao, A. et al. Endocannabinoid LTD in accumbal D1 neurons mediates reward-seeking behavior. iScience 23, 100951 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Augustin, S. M., Gracias, A. L., Luo, G., Anumola, R. C. & Lovinger, D. M. Striatonigral direct pathway 2-arachidonoylglycerol contributes to ethanol effects on synaptic transmission and behavior. Neuropsychopharmacology, https://doi.org/10.1038/s41386-023-01671-8 (2023).

  • Zhang, H. Y. et al. Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice. Proc. Natl Acad. Sci. USA 111, E5007–E5015 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster, D. J. et al. Antipsychotic-like effects of M4 positive allosteric modulators are mediated by CB2 receptor-dependent inhibition of dopamine release. Neuron 91, 1244–1252 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gantz, S. C. & Bean, B. P. Cell-autonomous excitation of midbrain dopamine neurons by Endocannabinoid-dependent lipid signaling. Neuron 93, 1375–1387.e1372 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pribasnig, M. A. et al. α/β hydrolase domain-containing 6 (ABHD6) Degrades the Late Endosomal/Lysosomal Lipid Bis(monoacylglycero)phosphate. J. Biol. Chem. 290, 29869–29881 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogasawara, D. et al. Rapid and profound rewiring of brain lipid signaling networks by acute diacylglycerol lipase inhibition. Proc. Natl Acad. Sci. 113, 26–33 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Cristino, L., Bisogno, T. & Di Marzo, V. Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat. Rev. Neurol. 16, 9–29 (2020).

    Article  PubMed  Google Scholar 

  • Singh, S. et al. Pharmacological Characterization of the Endocannabinoid Sensor GRAB(eCB2.0). Cannabis Cannabinoid Res, https://doi.org/10.1089/can.2023.0036 (2023).

  • Ortega-Gutiérrez, S., Hawkins, E. G., Viso, A., López-Rodríguez, M. L. & Cravatt, B. F. Comparison of anandamide transport in FAAH wild-type and knockout neurons: evidence for contributions by both FAAH and the CB1 receptor to anandamide uptake. Biochemistry 43, 8184–8190 (2004).

    Article  PubMed  Google Scholar 

  • Robbe, D., Alonso, G., Duchamp, F., Bockaert, J. & Manzoni, O. J. Localization and mechanisms of action of cannabinoid receptors at the glutamatergic synapses of the mouse nucleus accumbens. J. Neurosci. 21, 109–116 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman, A. F. & Lupica, C. R. Direct actions of cannabinoids on synaptic transmission in the nucleus accumbens: a comparison with opioids. J. Neurophysiol. 85, 72–83 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Walter, L., Dinh, T. & Stella, N. ATP induces a rapid and pronounced increase in 2-arachidonoylglycerol production by astrocytes, a response limited by monoacylglycerol lipase. J. Neurosci. 24, 8068–8074 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viader, A. et al. Metabolic interplay between astrocytes and neurons regulates Endocannabinoid action. Cell Rep. 12, 798–808 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martín, R., Bajo-Grañeras, R., Moratalla, R., Perea, G. & Araque, A. Circuit-specific signaling in astrocyte-neuron networks in basal ganglia pathways. Science 349, 730–734 (2015).

    Article  PubMed  Google Scholar 

  • Requie, L. M. et al. Astrocytes mediate long-lasting synaptic regulation of ventral tegmental area dopamine neurons. Nat. Neurosci. 25, 1639–1650 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Zhao, S. et al. α/β-Hydrolase domain-6 and saturated long chain monoacylglycerol regulate insulin secretion promoted by both fuel and non-fuel stimuli. Mol. Metab. 4, 940–950 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma, S., Hryhorczuk, C. & Fulton, S. Progressive-ratio responding for palatable high-fat and high-sugar food in mice. J. Vis. Exp., e3754, https://doi.org/10.3791/3754 (2012).

  • Stauffer, W. R. et al. Dopamine neuron-specific optogenetic stimulation in Rhesus Macaques. Cell 166, 1564–1571.e1566 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hryhorczuk, C. et al. Dampened mesolimbic dopamine function and signaling by saturated but not monounsaturated dietary lipids. Neuropsychopharmacology 41, 811–821 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Décarie-Spain, L. et al. Nucleus accumbens inflammation mediates anxiodepressive behavior and compulsive sucrose seeking elicited by saturated dietary fat. Mol. Metab. 10, 1–13 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma, S. & Fulton, S. Diet-induced obesity promotes depressive-like behaviour that is associated with neural adaptations in brain reward circuitry. Int J. Obes. 37, 382–389 (2013).

    Article  CAS  Google Scholar 

  • Andersen, C. L., Jensen, J. L. & Ørntoft, T. F. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64, 5245–5250 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Zoerner, A. A. et al. Simultaneous UPLC-MS/MS quantification of the endocannabinoids 2-arachidonoyl glycerol (2AG), 1-arachidonoyl glycerol (1AG), and anandamide in human plasma: minimization of matrix-effects, 2AG/1AG isomerization and degradation by toluene solvent extraction. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 883-884, 161–171 (2012).

    Article  CAS  Google Scholar 

  • Similar news
    News Archive
    • Jesse McCartney
      Jesse McCartney
      ‘The Masked Singer’ spoilers: The Turtle is …
      7 May 2020
      1
    • Mars 2020
      Mars 2020
      Sur Mars, Perseverance se retourne et photographie le delta de Jezero
      31 Oct 2024
      18
    • Capcom countdown
      Capcom countdown
      Resident Evil Fans Left Disappointed By Capcom's Mystery Countdown
      21 Feb 2022
      1
    • NB Power outages
      NB Power outages
      Weather front brings heavy rain, power outages to the Maritimes
      1 May 2023
      2
    • Windsor Lancers
      Windsor Lancers
      Youthful Lancers continue rise as win over Mustangs puts team in first place
      17 days ago
      1
    • The Hertz Corporation
      The Hertz Corporation
      Hertz Files For Bankruptcy After 16000 Employees Were Let Go And CEO Made Over $9 Million
      24 May 2020
      1